Abstract

This study aims to investigate the chemical stability of some modern paint samples exposed to a new Light Emitting Diode (LED)-lighting system and a halogen lamp by using micro-attenuated total reflectance of Fourier transform infrared spectroscopy (µ-ATR-FTIR), µ-Raman, pyrolysis—gas chromatography/mass spectrometry (Py-GC/MS), and thermally assisted hydrolysis and methylation of GC/MS (THM-GC/MS). Those investigations were performed before and after the exposure of the samples to lightings for 1250, 2400, 3300, and 5000 h. The results obtained with µ-Raman spectroscopy show the high stability of the selected inorganic pigments after the exposure to the lighting systems; while similar to the UV/Vis/NIR results reported in a previous study, µ-ATR-FTIR and THM-GC/MS results evidence greater chemical changes occurring principally on the linseed oil binder-based mock-ups among the acrylic and alkyd-based samples. Moreover, principal component analyses (PCA) and hierarchical cluster analyses (HCA) of THM-GC/MS results highlight that those changes were mostly dependent on the exposure time and on the type of pigment, while being independent of the lighting system used. Finally, semi-quantitative µ-ATR-FTIR results show slight pigment enrichment at the paint surface due to the auto and photo-oxidative degradation of the linseed oil binder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.