Abstract
The automatic classification of human images on the basis of age range and gender can be used in audiovisual content adaptation for Smart TVs or marquee advertising. Knowledge about users is used by publishing agencies and departments regulating TV content; on the basis of this information (age, gender) they are able to provide content that suits the interests of users. To this end, the creation of a highly precise image pattern recognition system is necessary, this may be one of the greatest challenges faced by computer technology in the last decades. These recognition systems must apply different pattern recognition techniques, in order to distinct gender and age in the images. In this work, we propose a multi-agent system that integrates different techniques for the acquisition, preprocessing and processing of images for the classification of age and gender. The system has been tested in an office building. Thanks to the use of a multi-agent system which allows to apply different workflows simultaneously, the performance of different methods could be compared (each flow with a different configuration). Experimental results have confirmed that a good preprocessing stage is necessary if we want the classification methods to perform well (Fisherfaces, Eigenfaces, Local Binary Patterns, Multilayer perceptron). The Fisherfaces method has proved to be more effective than MLP and the training time was shorter. In terms of the classification of age, Fisherfaces offers the best results in comparison to the rest of the system’s classifiers. The use of filters has allowed to reduce dimensionality, as a result the workload was reduced, a great advantage in a system that performs classification in real time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.