Abstract

Systems health monitoring is essential to guaranteeing the safe, efficient, and reliable operation of engineering systems. Integrated systems health management methodologies include fault diagnosis mechanism. Diagnosis involves detecting when a fault has occurred, isolating the true fault, and identifying the true damage to the system. This important issue is even harder when the systems to be diagnosed are dynamic and spatially distributed systems with their successively increasing complexity. For such systems, a single diagnostic entity having a model of the whole system approach is inappropriate. Whereas a distributed approach of multiple diagnostic agents can offer a solution. An overall systematic solution for these issues could be obtained by an artificial intelligent mechanism called the multi-agent system (MAS). This paper presents a MAS model for fault diagnosis based on logical theory of diagnosis. In this approach, each local diagnostic agent has knowledge above its subsystem and an abstract view of the neighboring subsystems and it is able to determine the local minimal diagnoses that are consistent with global diagnoses. The multi-agent models are simulated in Java Agent Development Framework and are applied to the preheated cement cyclone in the workshop of SCIMAT clinker.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.