Abstract

Bottleneck areas are prone to severe traffic congestion due to the sudden drop in capacity. To improve traffic efficiency in the bottleneck area, this paper proposes a multi-agent deep reinforcement learning framework integrating collision avoidance strategies to improve traffic efficiency in a mandatory lane change scenario. The proposed method considers distance-keeping and lane-changing coordination in a connected autonomous vehicle (CAV) environment, by controlling vehicles' longitudinal and lateral movement to effectively reduce traffic congestion in a mandatory lane change scenario. This framework was trained and tested in a simulation environment that is the same as the natural driving environment. Compared with real-world data and the benchmark model (a Dueling Double Deep Q-Network-based model), the proposed model shows better performance in terms of average speed, travel time, throughput, and safety in the bottleneck area. The results show that the proposed model can effectively reduce traffic congestion and improve traffic efficiency in a mandatory lane change scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call