Abstract
5G is envisioned to simultaneously provide diverse service types with heterogeneous needs under very different application scenarios and business models. Therefore, network slicing is included as a key feature of the 5G architecture to allow sharing a common infrastructure among different tenants, such as mobile communication providers, vertical market players, etc. In order to provide the Radio Access Network (RAN) with network slicing capabilities, mechanisms that efficiently distribute the available capacity among the different tenants while satisfying their needs are required. For this purpose, this paper proposes a multi-agent reinforcement learning approach for RAN capacity sharing. It makes use of the Deep Q-Network algorithm in a way that each agent is associated to a different tenant and learns the capacity to be provided to this tenant in each cell while ensuring that the service level agreements are satisfied and that the available radio resources are efficiently used. The consideration of multiple agents contributes to a better scalability and higher learning speed in comparison to single-agent approaches. In this respect, results show that the policy learnt by the agent of one tenant can be generalised and directly applied by other agents, thus reducing the complexity of the training and making the proposed solution easily scalable, e.g., to add new tenants in the system. The proposed approach is well aligned with the on-going 3GPP standardization work and guidelines for the parametrization of the solution are provided, thus enforcing its practical applicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.