Abstract

As an individual plant participating in the power market, the virtual power plant (VPP) is regarded as the ultimate configuration of the energy Internet, and effective dispatching is a challenge. This paper proposes a multi-agent optimal bidding strategy based on a self-adaptive global optimal harmony search algorithm (SGHSA) to solve the problem of multi-operator participation in virtual power station scheduling. The method takes multiple agents to simulate the bidding process in the VPPs and distributes the profits for the operators based on the market mechanism to optimize the distributed energy resources (DERs). Case studies are provided and show that the proposed method realizes the optimal distribution of power generation and demand level, which improves the comprehensive advantage of the VPP in electricity market transactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.