Abstract
During the past years, a number of smart manufacturing concepts have been proposed, such as cloud manufacturing, Industry 4.0, and Industrial Internet. One of their common aims is to optimize the collaborative resource configuration across enterprises by establishing platforms that aggregate distributed resources. In all of these concepts, a complete manufacturing system consists of distributed physical manufacturing systems and a platform containing the virtual manufacturing systems mapped from the physical ones. We call such manufacturing systems platform-based smart manufacturing systems (PSMSs). A PSMS can therefore be regarded as a huge cyber-physical system with the cyber part being the platform and the physical part being the corresponding physical manufacturing system. A significant issue for a PSMS is how to optimally schedule the aggregated resources. Multi-agent technology provides an effective approach for solving this issue. In this paper we propose a multi-agent architecture for scheduling in PSMSs, which consists of a platform-level scheduling multi-agent system (MAS) and an enterprise-level scheduling MAS. Procedures, characteristics, and requirements of scheduling in PSMSs are presented. A model for scheduling in a PSMS based on the architecture is proposed. A case study is conducted to demonstrate the effectiveness of the proposed architecture and model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Frontiers of Information Technology & Electronic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.