Abstract

In a polarization-sensitive optical system, it is important to understand the effects that mirrors have on polarization at a specific wavelength of interest, angle of incidence, reflective material, coating, etc. When modeling reflection, the optical designer oftentimes needs to know the Mueller matrix for the particular mirror, in order to assess its overall impact on polarization and possibly reduce the mirror-related effects in the entire system’s performance. Based on an example of a protected gold flat mirror, we investigated two methods, one analytical and one experimental, for determining the Mueller matrix of a noble metallic mirror. The measured Mueller matrix was shown to be nondepolarizing. Then, using polar decomposition, the measured matrix was interpreted as a combination of a pure retarder and a diattenuator. Further investigation showed that the diattenuation property was very weak, which offered the opportunity of largely balancing the introduced polarization deviation by means of a linear compensating retarder. The results of this work were used successfully for improving the design of a diagnostic device for ophthalmology based on retinal birefringence scanning. The described approach also greatly improves the precision of Mueller-matrix-based computer modeling of polarization sensitive systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.