Abstract

The high-level resistance to next-generation β-lactams frequently found in Staphylococcus aureus isolates lacking mec, which encodes the transpeptidase PBP2a traditionally associated with methicillin-resistant Staphylococcus aureus (MRSA), has remained incompletely understood for decades. A new study by Lai et al. found that the co-occurrence of mutations in pbp4 and gdpP, which respectively cause increased PBP4-mediated cell wall crosslinking and elevated cyclic-di-AMP levels, produces synergistic β-lactam resistance rivaling that of PBP2a-producing MRSA (L.-Y. Lai, N. Satishkumar, S. Cardozo, V. Hemmadi, et al., mBio 15:e02889-23. 2024, https://doi.org/10.1128/mbio.02889-23). The combined mutations are sufficient to explain the high-level β-lactam resistance of some mec-lacking strains, but the mechanism of synergy remains elusive and an avenue for further research. Importantly, the authors establish that co-occurrence of these mutations leads to antibiotic therapy failure in a Caenorhabditis elegans infection model. These results underscore the need to consider this unique and novel β-lactam resistance mechanism during the clinical diagnosis of MRSA, rather than relying on mec as a diagnostic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.