Abstract
Expression of several heat shock operons, mainly coding for small heat shock proteins, is under the control of ROSE (repression of heat shock gene expression) in various rhizobial species. This negatively cis-acting element confers temperature control by preventing expression at physiological temperatures. We provide evidence that ROSE-mediated regulation occurs at the post-transcriptional level. A detailed mutational analysis of ROSE(1)-hspA translationally fused to lacZ revealed that its highly conserved 3'-half is required for repression at normal temperatures (30 degrees C). The mRNA in this region is predicted to form an extended secondary structure that looks very similar in all 15 known ROSE elements. Nucleotides involved in base pairing are strongly conserved, whereas nucleotides in loop regions are more divergent. Base substitutions leading to derepression of the lacZ fusion at 30 degrees C exclusively resided in potential stem structures. Optimised base pairing by elimination of a bulged residue and by introduction of complementary nucleotides in internal loops resulted in ROSE elements that were tightly repressed not only at normal but also at heat shock temperatures. We propose a model in which the temperature-regulated secondary structure of ROSE mRNA influences heat shock gene expression by controlling ribosome access to the ribosome-binding site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.