Abstract

A moving-mesh finite difference scheme based on local conservation is presented for a class of scale-invariant second-order nonlinear diffusion problems with moving boundaries that (a) preserves the scaling properties and (b) is exact at the nodes for initial conditions sampled from similarity solutions. Details are presented for one-dimensional problems, the extension to multidimensions is described, and the exactness property is confirmed for two radially symmetric moving boundary problems, the porous medium equation and a simplistic glacier equation. In addition, the accuracy of the scheme is also tested for non self-similar initial conditions by computing relative errors in the approximate solution (in the l ∞ norm) and the approximate boundary position, indicating superlinear convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.