Abstract
AbstractWe propose a new moving pseudo-boundary method of fundamental solutions (MFS) for the determination of the boundary of a three-dimensional void (rigid inclusion or cavity) within a conducting homogeneous host medium from overdetermined Cauchy data on the accessible exterior boundary. The algorithm for imaging the interior of the medium also makes use of radial spherical parametrization of the unknown star-shaped void and its centre in three dimensions. We also include the contraction and dilation factors in selecting the fictitious surfaces where the MFS sources are to be positioned in the set of unknowns in the resulting regularized nonlinear least-squares minimization. The feasibility of this new method is illustrated in several numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.