Abstract

Aiming at the problem of real-time detection and location of moving objects, the deep learning algorithm is used to detect moving objects in complex situations. In this paper, based on the deep learning algorithm of wireless sensor networks, a novel target motion detection method is proposed. This method uses the deep learning model to extract visual potential representation features through offline similarity function ranking learning and online model incremental update and uses the hierarchical clustering algorithm to achieve target detection and positioning; the low-precision histogram and high-precision histogram cascade the method which determines the correct position of the target and achieves the purpose of detecting the moving target. In order to verify the advantages and disadvantages of the deep learning algorithm compared with traditional moving object detection methods, a large number of comparative experiments are carried out, and the experimental results were analyzed qualitatively and quantitatively from a statistical perspective. The results show that, compared with the traditional methods, the deep learning algorithm based on the wireless sensor network proposed in this paper is more efficient. The detection and positioning method do not produce the error accumulation phenomenon and has significant advantages and robustness. The moving target can be accurately detected with a small computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.