Abstract

A moving mesh finite element algorithm is proposed for the adaptive solution of nonlinear diffusion equations with moving boundaries in one and two dimensions. The moving mesh equations are based upon conserving a local proportion, within each patch of finite elements, of the total “mass” that is present in the projected initial data. The accuracy of the algorithm is carefully assessed through quantitative comparison with known similarity solutions, and its robustness is tested on more general problems. Applications are shown to a variety of problems involving time-dependent partial differential equations with moving boundaries. Problems which conserve mass, such as the porous medium equation and a fourth order nonlinear diffusion problem, can be treated by a simplified form of the method, while problems which do not conserve mass require the full theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.