Abstract
In this paper, the meshless local Petrov–Galerkin approximation is proposed to solve the 2‐D nonlinear Klein–Gordon equation. We used the moving Kriging interpolation instead of the MLS approximation to construct the meshless local Petrov–Galerkin shape functions. These shape functions possess the Kronecker delta function property. The Heaviside step function is used as a test function over the local sub‐domains. Here, no mesh is needed neither for integration of the local weak form nor for construction of the shape functions. So the present method is a truly meshless method. We employ a time‐stepping method to deal with the time derivative and a predictor–corrector scheme to eliminate the nonlinearity. Several examples are performed and compared with analytical solutions and with the results reported in the extant literature to illustrate the accuracy and efficiency of the presented method. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.