Abstract

This work considers the generalized plane problem of a moving dislocation in an anisotropic elastic medium with piezoelectric, piezomagnetic and magnetoelectric effects. The closed-form expressions for the elastic, electric and magnetic fields are obtained using the extended Stroh formalism for steady-state motion. The radial components, E r and H r , of the electric and magnetic fields as well as the hoop components, D θ and B θ , of electric displacement and magnetic flux density are found to be independent of θ in a polar coordinate system. This interesting phenomenon is proven to be is a consequence of the electric and magnetic fields, electric displacement and magnetic flux density that exhibit the singularity r −1 near the dislocation core. As an illustrative example, the more explicit results for a moving dislocation in a transversely isotropic magneto–electro-elastic medium are provided and the behavior of the coupled fields is analyzed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.