Abstract
Recommendation systems are special personalization tools that help users to find interesting information and services in complex online shops. Even though today’s e-commerce environments have drastically evolved and now incorporate techniques from other domains and application areas such as Web mining, semantics, artificial intelligence, user modeling, and profiling setting up a successful recommendation system is not a trivial or straightforward task. This chapter argues that by monitoring, analyzing, and understanding the behavior of customers, their demographics, opinions, preferences, and history, as well as taking into consideration the specific e-shop ontology and by applying Web mining techniques, the effectiveness of produced recommendations can be significantly improved. In this way, the e-shop may upgrade users’ interaction, increase its usability, convert users to buyers, retain current customers, and establish long-term and loyal one-to-one relationships.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.