Abstract

Protein-protein interactions (PPIs) play crucial roles in a number of biological processes. Recently, protein interaction networks (PINs) for several model organisms and humans have been generated, but few large-scale researches for mice have ever been made neither experimentally nor computationally. In the work, we undertook an effort to map a mouse PIN, in which protein interactions are hidden in enormous amount of biomedical literatures. Following a co-occurrence-based text-mining approach, a probabilistic model--naïve Bayesian was used to filter false-positive interactions by integrating heterogeneous kinds of evidence from genomic and proteomic datasets. A support vector machine algorithm was further used to choose protein pairs with physical interactions. By comparing with the currently available PPI datasets from several model organisms and humans, it showed that the derived mouse PINs have similar topological properties at the global level, but a high local divergence. The mouse protein interaction dataset is stored in the Mouse protein-protein interaction DataBase (MppDB) that is useful source of information for system-level understanding of gene function and biological processes in mammals. Access to the MppDB database is public available at http://bio.scu.edu.cn/mppi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.