Abstract

BackgroundBinge drinking, an increasingly common form of alcohol consumption, is associated with increased mortality and morbidity; yet, its effects on the immune system’s ability to defend against infectious agents are poorly understood. Burkholderia pseudomallei, the causative agent of melioidosis can occur in healthy humans, yet binge alcohol use is progressively being recognized as a major risk factor. Although our previous studies demonstrated that binge alcohol exposure results in reduced alveolar macrophage function and increased Burkholderia virulence in vitro, no experimental studies have investigated the outcomes of binge alcohol on Burkholderia spp. infection in vivo.Principal findingsIn this study, we used the close genetic relatives of B. pseudomallei, B. thailandensis E264 and B. vietnamiensis, as useful BSL-2 model systems. Eight-week-old female C57BL/6 mice were administered alcohol comparable to human binge drinking episodes (4.4 g/kg) or PBS intraperitoneally 30 min before a non-lethal intranasal infection. In an initial B. thailandensis infection (3 x 105), bacteria accumulated in the lungs and disseminated to the spleen in alcohol administered mice only, compared with PBS treated mice at 24 h PI. The greatest bacterial load occurred with B. vietnamiensis (1 x 106) in lungs, spleen, and brain tissue by 72 h PI. Pulmonary cytokine expression (TNF-α, GM-CSF) decreased, while splenic cytokine (IL-10) increased in binge drunk mice. Increased lung and brain permeability was observed as early as 2 h post alcohol administration in vivo. Trans-epithelial electrical resistance (TEER) was significantly decreased, while intracellular invasion of non-phagocytic cells increased with 0.2% v/v alcohol exposure in vitro.ConclusionsOur results indicate that a single binge alcohol dose suppressed innate immune functions and increased the ability of less virulent Burkholderia strains to disseminate through increased barrier permeability and intracellular invasion of non-phagocytic cells.

Highlights

  • Binge drinking, and respiratory infections are significant global health burdens [1]

  • Our results indicate that a single binge alcohol dose suppressed innate immune functions and increased the ability of less virulent Burkholderia strains to disseminate through increased barrier permeability and intracellular invasion of non-phagocytic cells

  • Burkholderia pseudomallei is the causative agent of melioidosis and is a Tier 1 select agent that has been identified as a potential bio-terrorist weapon [5]

Read more

Summary

Introduction

Respiratory infections are significant global health burdens [1]. Patients with alcohol use disorders (AUDs) are more frequently infected with virulent pneumonic pathogens and experience increased morbidity and mortality from these infections [2, 3]. An increasingly common form of alcohol consumption, is associated with increased mortality and morbidity; yet, its effects on the immune system’s ability to defend against infectious agents are poorly understood. Burkholderia pseudomallei, the causative agent of melioidosis can occur in healthy humans, yet binge alcohol use is progressively being recognized as a major risk factor. Eight-week-old female C57BL/6 mice were administered alcohol comparable to human binge drinking episodes (4.4 g/kg) or PBS intraperitoneally 30 min before a non-lethal intranasal infection. In an initial B. thailandensis infection (3 x 105), bacteria accumulated in the lungs and disseminated to the spleen in alcohol administered mice only, compared with PBS treated mice at 24 h PI. Trans-epithelial electrical resistance (TEER) was significantly decreased, while intracellular invasion of non-phagocytic cells increased with 0.2% v/v alcohol exposure in vitro

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call