Abstract

We define two pairings relating the A-motive with the dual A-motive of an abelian Anderson A-module. We show that specializations of these pairings give the exponential and logarithm functions of this Anderson A-module, and we use these specializations to give precise formulas for the coefficients of the exponential and logarithm functions. We then use these pairings to express the exponential and logarithm functions as evaluations of certain infinite products. As an application of these ideas, we prove an analogue of the Mellin transform formula for the Riemann zeta function in the case of Carlitz zeta values. We also give an example showing how our results apply to Carlitz multiple zeta values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.