Abstract

Humans have needs motivating their behavior according to intensity and context. However, we also create preferences associated with each action’s perceived pleasure, which is susceptible to changes over time. This makes decision-making more complex, requiring learning to balance needs and preferences according to the context. To understand how this process works and enable the development of robots with a motivational-based learning model, we computationally model a motivation theory proposed by Hull. In this model, the agent (an abstraction of a mobile robot) is motivated to keep itself in a state of homeostasis. We introduced hedonic dimensions to explore the impact of preferences on decision-making and employed reinforcement learning to train our motivated-based agents. In our experiments, we deploy three agents with distinct energy decay rates, simulating different metabolic rates, within two diverse environments. We investigate the influence of these conditions on their strategies, movement patterns, and overall behavior. The findings reveal that agents excel at learning more effective strategies when the environment allows for choices that align with their metabolic requirements. Furthermore, we observe that incorporating pleasure as a component of the motivational mechanism affects behavior learning, particularly for agents with regular metabolisms depending on the environment. Our study also unveils that, when confronted with survival challenges, agents prioritize immediate needs over pleasure and equilibrium. These insights shed light on how robotic agents can adapt and make informed decisions in demanding scenarios, demonstrating the intricate interplay between motivation, pleasure, and environmental context in autonomous systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.