Abstract

The performance of portable and wearable biosensors is highly influenced by motion artifact. In this paper, a novel real-time adaptive algorithm is proposed for accurate motion-tolerant extraction of heart rate (HR) and pulse oximeter oxygen saturation ( SpO2) from wearable photoplethysmographic (PPG) biosensors. The proposed algorithm removes motion artifact due to various sources including tissue effect and venous blood changes during body movements and provides noise-free PPG waveforms for further feature extraction. A two-stage normalized least mean square adaptive noise canceler is designed and validated using a novel synthetic reference signal at each stage. Evaluation of the proposed algorithm is done by Bland-Altman agreement and correlation analyses against reference HR from commercial ECG and SpO2 sensors during standing, walking, and running at different conditions for a single- and multisubject scenarios. Experimental results indicate high agreement and high correlation (more than 0.98 for HR and 0.7 for SpO2 extraction) between measurements by reference sensors and our algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.