Abstract

The design and characterization of the heteronuclear group 14 C[triple bond, length as m-dash]E (E = Si, Ge, Sn, Pb) triple bonds have attracted intensive interest in the past few decades. In the current work, utilizing the advantages of N-heterocyclic carbenes (NHCs) and Lewis acid-base pair strategy, we theoretically designed a new class of compounds III-1, i.e., (NHCAR)C[triple bond, length as m-dash]E(Al(C6F5)3). Quantum chemical calculations showed that these singlet compounds possess very favourable isomerization, fragmentation and dimerization stabilities at the B3LYP/def2-TZVPP//B3LYP/def2-SVP level. The calculated bond lengths of CE in III-1 are 1.63 Å for Si, 1.70 Å for Ge, 1.91 Å for Sn and 2.01 Å for Pb, respectively, which are close to or even shorter than the known C[triple bond, length as m-dash]E bond lengths. In addition, the significant Mayer bond order values, two orthogonal π orbitals and one σ orbital between the C and E atoms also indicate the characteristics of triple bonds. Based on several bonding analyses, strong delocalization is found to exist between the C[triple bond, length as m-dash]E core and NHCAR forming a weak C[double bond, length as m-dash]C double bond. Hence, such obtained C[triple bond, length as m-dash]E species also can be described by their resonace structures as cunmulene analogs. In all, III-1 proposed here not only presents a universal C[triple bond, length as m-dash]E motif for all the heavier group 14 elements, but also provides a new strategy for the design and synthesis of heteronuclear group 14 triple bonds in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.