Abstract

This paper presents the architectural concept and implementation of a mostly digital voltage-controlled oscillator-analog-to-digital converter (VCO-ADC) with third-order quantization noise shaping. The system is based on the combination of a VCO and a digital counter. It is shown how this combination can function as a continuous-time integrator to form a high-order continuous-time sigma–delta modulator (CT-SDM). The counter consists only of digital building blocks, and the VCOs are implemented using ring oscillators, which are also digital-friendly. No traditional analog blocks, such as opamps, OTAs, or comparators, are used. As a proof of concept, we have implemented a third-order VCO-based CT-SDM for a 10-MHz bandwidth in the low-power version of a 65-nm CMOS technology. This prototype shows a measured performance of 71/66.2/62.5-dB DR/SNR/SNDR at a 10-MHz bandwidth while consuming 1.8 mW from a 1.0-V analog and 1.9 mW from a 1.2-V digital supply. With digital calibration, the nonlinearity could be pushed below the noise level, leading to an improved peak SNDR of 66 dB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call