Abstract

We present a new mortar approach in the spectral context for the analysis and optimization of L-shaped thin composite laminates. Its roots may be found in the (very few) existing mortar approaches for the bi-Laplacian that are herein extended to handle the fourth-order elliptic operator governing thin anisotropic laminates. For the computation of the structural matrices, exact symbolic integration is used rather than more classical Gauss---Lobatto quadrature schemes. Thanks to the underlying spectral approach, considerable CPU times savings are obtained compared with finite-element approaches when the optimal design of the laminates is pursued. A few numerical studies that are concerned with the analysis and the optimization of L-shaped single-layered plates are described in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.