Abstract

A mixed finite volume method is considered for the mixed formulation of second-order elliptic equations. The computational domain can be decomposed into non-overlapping sub-domains or blocks and the diffusion tensors may be discontinuous across the sub-domain boundaries. We define a conforming triangular partition on each sub-domain independently, and employ the standard mixed finite volume method within each sub-domain. A mortar finite element space is introduced to approximate the trace of the pressure on the non-matching interfaces. Moreover, a continuity condition of flux is imposed weakly. We prove the scheme’s first order optimal rate of convergence for both the pressure and the velocity. Numerical experiments are provided to illustrate the error behavior of the scheme and confirm our theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.