Abstract

. In this paper, we are concerned with mortar edge element methods for solving three-dimensional Maxwell's equations. A new type of Lagrange multiplier space is introduced to impose the weak continuity of the tangential components of the edge element solutions across the interfaces between neighboring subdomains. The mortar edge element method is shown to have nearly optimal convergence under some natural regularity assumptions when nested triangulations are assumed on the interfaces. A generalized edge element interpolation is introduced which plays a crucial role in establishing the nearly optimal convergence. The theoretically predicted convergence is confirmed by numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.