Abstract
In this paper we investigate existence as well as multiplicity of scalar flat metric of prescribed boundary mean curvature on the standard 4-dimensional ball. Due to the existence of critical point at infinity, the standard variational methods cannot be applied. To overcome this difficulty, we prove that in a neighborhood of critical points at infinity, a Morse lemmas at infinity reduction holds, then develop a whole Morse theory of this noncompact variational problem. In particular we establish, under generic boundary condition Morse inequalities at infinity, which give a lower bound on the number of solutions to the above problem in terms of the total contribution of the critical point at infinity to the difference of topology between the level sets of the associated Euler–Lagrange functional. As further application of this Morse theoretical approach, we prove more existence results and extend a topological invariant introduced by A. Bahri.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.