Abstract

We propose a new method for estimating gill net selectivity which estimates the probabilities leading to retention by analyzing both the fish morphology and the mesh geometry. This method estimates the number of fish approaching and contacting gill nets of different mesh sizes as an intermediate step towards computing the selectivity. Instead of assuming an underlying probability distribution as in indirect methods, we split the entire interaction between a fish and the gill net into several stages, each with its own probability. All the necessary parameters to compute these probabilities can be obtained from measurements of the fish, knowledge of the mesh geometry, and catch data from different mesh sizes. The framework offers three pathways for computing the total number of fish contacting the gill nets and has the capability to use both wedged and entangled fish in the analysis. As a proof of concept, the method is applied to catch data for cod (G. morhua) and Dolly Varden (S. malma) to estimate the number of fish contacting the gill nets in both cases. By estimating the number of fish contacting the gill net in addition to the selectivity, this method provides an important step towards deriving estimates of fish density in a particular fishery from gill net measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call