Abstract
This paper proposes an optimization design method for the modular cellular structure of non-uniform density, which is filled into the morphing wing to generate variable torsion angle. By actively adjusting the distribution of the span-wise torsion angle, the lift distribution on the wing surface can be properly adjusted to avoid the problem of aeroelastic divergence or reduce the bending moment at the wing root. This ability is validated using CFD simulation. In the optimization framework proposed, the adaptive gradient algorithm is used to suppress the divergence of iteration. A finite element model with geometrical nonlinear effects is then proposed to correct the errors of the linear analysis and verify the effectiveness of the optimization method. This design is shown to be able to reduce the overall weight of the structure and achieve control of the macro mechanical performance of the wing. The work provides a general optimization design method for similar modular structures, allowing independent programmable adjustment of the parameters of each single structural cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.