Abstract

Ni,Fe‐containing carbon monoxide dehydrogenases (CODHs) catalyze the reversible reduction of CO2 to CO. Several anaerobic microorganisms encode multiple CODHs in their genome, of which some, despite being annotated as CODHs, lack a cysteine of the canonical binding motif for the active site Ni,Fe‐cluster. Here, we report on the structure and reactivity of such a deviant enzyme, termed CooS‐VCh. Its structure reveals the typical CODH scaffold, but contains an iron‐sulfur‐oxo hybrid‐cluster. Although closely related to true CODHs, CooS‐VCh catalyzes neither CO oxidation, nor CO2 reduction. The active site of CooS‐VCh undergoes a redox‐dependent restructuring between a reduced [4Fe‐3S]‐cluster and an oxidized [4Fe‐2S‐S*‐2O‐2(H2O)]‐cluster. Hydroxylamine, a slow‐turnover substrate of CooS‐VCh, oxidizes the hybrid‐cluster in two structurally distinct steps. Overall, minor changes in CODHs are sufficient to accommodate a Fe/S/O‐cluster in place of the Ni,Fe‐heterocubane‐cluster of CODHs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.