Abstract
We show that two operator algebras are strongly Morita equivalent (in the sense of Blecher, Muhly and Paulsen) if and only if their categories of operator modules are equivalent via completely contractive functors. Moreover, any such functor is completely isometrically isomorphic to the Haagerup tensor product (= interior tensor product) with a strong Morita equivalence bimodule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.