Abstract

This work proposes a methodology based on the probabilistic dynamic programming (PDP) to integrate operational probabilistic forecasts of a photovoltaic (PV) plant into the optimization of the day-ahead schedule of an energy storage system (ESS). The proposed approach is tested on a microgrid based on a real educational building, a PV farm and Li-ion batteries. The objective is to minimize the operating cost of the microgrid. The operational day-ahead forecasts are derived from the Ensemble Prediction System (EPS) provided by a well-known Numerical Weather Prediction (NWP) model. Contrary to the classical use of deterministic forecasts, we demonstrate that the integration of the probabilistic forecasts in the optimization process leads to a more efficient microgrid management and to a reduction of up to 38% of the operating costs. Besides, it is shown that the non linearity resulting from the power dependency of the efficiency of the inverters must be taken into account in order to yield relevant optimization results. • A method to improve microgrid operation. • Use of probabilistic dynamic programming to solve the unit commitment problem. • Integration of probabilistic solar forecasts in the optimization. • Even the worst probabilistic forecasts over perform deterministic ones. • Non-linear optimization method is required to achieved suitable results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.