Abstract

We introduce a new one-dimensional (1-D) analysis of low-density parity-check (LDPC) codes on additive white Gaussian noise channels which is significantly more accurate than similar 1-D methods. Our method assumes a Gaussian distribution in message-passing decoding only for messages from variable nodes to check nodes. Compared to existing work, which makes a Gaussian assumption both for messages from check nodes and from variable nodes, our method offers a significantly more accurate estimate of convergence behavior and threshold of convergence. Similar to previous work, the problem of designing irregular LDPC codes reduces to a linear programming problem. However, our method allows irregular code design in a wider range of rates without any limit on the maximum variable-node degree. We use our method to design irregular LDPC codes with rates greater than 1/4 that perform within a few hundredths of a decibel from the Shannon limit. The designed codes perform almost as well as codes designed by density evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.