Abstract
A Monte Carlo fluence estimator has been designed to take advantage of the computational power of graphical processing units (GPUs). This new estimator, termed the volumetric-ray-casting estimator, is an extension of the expectation estimator. It can be used as a replacement of the track-length estimator for the estimation of global fluence. Calculations for this estimator are performed on the GPU while the Monte Carlo random walk is performed on the central processing unit (CPU). This method lowers the implementation cost for GPU acceleration of existing Monte Carlo particle transport codes as there is little modification of the particle history logic flow. Three test problems have been evaluated to assess the performance of the volumetric-ray-casting estimator for neutron transport on GPU hardware in comparison to the standard track-length estimator on CPU hardware. Evaluation of neutron transport through air in a criticality accident scenario showed that the volumetric-ray-casting estimator achieved 23 times the performance of the track-length estimator using a single core CPU paired with a GPU and 15 times the performance of the track-length estimator using an eight core CPU paired with a GPU. Simulation of a pressurized water reactor fuel assembly showed that the performance improvement was 6 times within the fuel and 7 times within the control rods using an eight core CPU paired with a single GPU.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.