Abstract

Optimizing targeted radionuclide therapy for patients with circulating malignant cells (e.g. blood-related cancers) or a micrometastatic spread requires quantification of various dosimetric parameters at the single-cell level. We present results on the energy deposition of monoenergetic electrons of initial energy from 100eV to 20keV – relevant to Auger emitting radionuclides – distributed either uniformly or at the surface of spherical volumes of radii from 10nm to 1μm which correspond to critical sub-cellular targets. Calculations have been carried out by our detailed-history Monte Carlo (MC) code which simulates event-by-event the complete slowing down (to 1Ry) of both the primary and all subsequent generations of electrons, as well as, by the continuous-slowing-down-approximation (CSDA) using analytic range-energy relationships. The latter method has been adopted by the MIRD committee of the Society of Nuclear Medicine for dosimetry at the cellular level (>1μm). Differences between the MC and CSDA results are up to ∼50% and are expected to be even larger at higher energies and/or smaller volumes. They are attributed to the deficiencies of the CSDA method associated with the neglect of straggling and δ-ray transport. The results are particularly relevant to targeted radiotherapy at the genome level by Auger emitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.