Abstract

The importance of the radiolysis of water in irradiation of biological systems has motivated considerable theoretical and experimental work in the radiation chemistry of water and aqueous solutions. In particular, Monte-Carlo simulations of radiation track structure and non-homogeneous chemistry have greatly contributed to the understanding of experimental results in radiation chemistry of heavy ions. Actually, most simulations of the non-homogeneous chemistry are done using the Independent Reaction Time (IRT) method, a very fast technique. The main limitation of the IRT method is that the positions of the radiolytic species are not calculated as a function of time, which is needed to simulate the irradiation of more complex systems. Step-by-step (SBS) methods, which are able to provide such information, have been used only sparsely because these are time consuming in terms of calculation. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry. In the present paper, the first of a series of two, the SBS method is reviewed in detail. To these ends, simulation of diffusion of particles and chemical reactions in aqueous solutions is reviewed, and implementation of the program is discussed. Simulation of model systems is then performed to validate the adequacy of stepwise diffusion and reaction schemes. In the second paper, radiochemical yields of simulated radiation tracks calculated by the SBS program in different conditions of LET, pH, and temperature are compared with results from the IRT program and experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.