Abstract
Conformational changes of a simplified model of grafted poly(ethylene oxide) (PEO) chains were simulated using an off-lattice Monte Carlo model. A random-walk scheme was used in our simulations. The initial polymer structure was modeled with molecular mechanics and models of grafted polymer chains were built using programs developed in our laboratory. During the simulation, all bond angles and bond lengths were kept fixed while the dihedral angles of backbones were changed to search for energy-favorite conformations. Torsional energy, van der Waals interaction, and Coulombic interaction were considered. Periodic boundary conditions were implemented. In addition, the solvent quality was simulated implicitly by modifying the Lennard-Jones 12–6 van der Waals expression. Each PEO chain, 50-monomer long, was represented with a united-atom model. Eight series of simulations with varying solvent quality, simulation temperature, and Coulombic interaction were carried out. For each series, nine different initial grafting densities of grafted PEO chains were considered. Five different conformations were simulated at each grafting density. The calculated system energies, scaling properties, and atom density profiles were studied. Changes in solvent quality produced different structural behaviors. As the grafting density increased, there was a mushroom-to-brush transition, and the scaling property of average layer thickness was dependent on the grafting density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.