Abstract
Investigations of two-dimensional models to simulate diffusion and reaction in zeolites with a Monte-Carlo method are presented herein. New results of the simulation of single component diffusion and binary diffusion and a possible method to rescale the obtained diffusion coefficients in real units is presented. The estimation of an accurate activation energy was found to be the most important factor, the other parameters were estimated by simple assumptions. Complex reactions such as a consecutive reaction and xylene isomerisation were simulated with a new model. With this model the selective behaviour of the two reactions was investigated. A Type-III selectivity according to Wheeler was found for the consecutive reaction. For xylene isomerisation, reaction paths were simulated and compared with experimental reaction paths. The composition of the thermodynamic equilibrium was obtained for high transition probabilities and the relative rate constants from the literature could be confirmed. According to the results of the simulations one can conclude that a ratio of the diffusion coefficients of o-, m-, and p-xylene=1:1:1000 is too large to explain the experimentally observed distribution of the xylene isomers and a difference of only one order of magnitude was found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.