Abstract

The evaluation of the structural response statistics constitutes one of the principal tasks in engineering. However, in the tail region near structural failure, engineering structures behave highly non-linear, making an analytic or closed form of the response statistics difficult or even impossible. Evaluating a series of computer experiments, the Monte Carlo method has been proven a useful tool to provide an unbiased estimate of the response statistics. Naturally, we want structural failure to happen very rarely. Unfortunately, this leads to a disproportionately high number of Monte Carlo samples to be evaluated to ensure an estimation with high confidence for small probabilities. Thus, in this paper, we present a new Monte Carlo simulation method enhanced by a convolutional neural network. The sample-set used for this Monte Carlo approach is provided by artificially generating site-dependent ground motion time histories using a non-linear Kanai-Tajimi filter. Compared to several state-of-the-art studies, the convolutional neural network learns to extract the relevant input features and the structural response behavior autonomously from the entire time histories instead of learning from a set of hand-chosen intensity inputs. Training the neural network based on a chosen input sample set develops a meta-model that is then used as a meta-model to predict the response of the total Monte Carlo sample set. This paper presents two convolutional neural network-enhanced strategies that allow for a practical design approach of ground motion excited structures. The first strategy enables for an accurate response prediction around the mean of the distribution. It is, therefore, useful regarding structural serviceability. The second strategy enables for an accurate prediction around the tail end of the distribution. It is, therefore, beneficial for the prediction of the probability of failure.

Highlights

  • Deciding whether a structure subjected to ground motion is or is not safe is a delicate task in engineering

  • Failure usually occurs in the non-linear range of structural behavior, making an analytic or closed form of the response statistics difficult or even impossible

  • We present the tail end of the complementary cumulative distribution function (CCDF) in Figure 7C, which shows the occurrence of exceeding a certain peak story drift ratio (PSDR) in a logarithmic plot

Read more

Summary

Introduction

Deciding whether a structure subjected to ground motion is or is not safe is a delicate task in engineering. One big issue is the high level of uncertainty when considering a ground excitation time history relevant to structural design. This fact forces us to apply probabilistic methodologies to design structures and infrastructures (Der Kiureghian, 1996; Bucher, 2009). Failure usually occurs in the non-linear range of structural behavior, making an analytic or closed form of the response statistics difficult or even impossible. In this context, the equivalent linearization method was proposed to approximate the response statistics, which is generally quite. To provide accurate response statistics for infrequent events, the tail equivalent linearization method was proposed (Fujimura and Der Kiureghian, 2007)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.