Abstract

Testing zero variance components is of utmost importance in various applications empowered by the use of mixed-effects models. Focusing on generalized linear models, this article proposes a permutation test using an analogue of the ANOVA test statistic that merely requires fitting the null model with independent observations. Monte Carlo simulations reveal that the new test has correct Type-I error rate and that its power compares favorably to an existing bootstrap score test. A real data application illustrates the advantageous capability of the proposed test in detecting the need for random effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.