Abstract
The authors conducted a Monte Carlo simulation of 8 statistical tests for comparing dependent zero-order correlations. In particular, they evaluated the Type I error rates and power of a number of test statistics for sample sizes (Ns) of 20, 50, 100, and 300 under 3 different population distributions (normal, uniform, and exponential). For the Type I error rate analyses, the authors evaluated 3 different magnitudes of the predictor-criterion correlations (py,x1 = py,x2=.1, .4, and .7). For the power analyses, they examined 3 different effect sizes or magnitudes of discrepancy between py,x2 and py,x2 (values of .1, .3, and .6). They conducted all of the simulations at 3 different levels of predictor intercorrelation (px1,x2 = .1, .3, and .6). The results indicated that both Type I error rate and power depend not only on sample size and population distribution, but also on (a) the predictor intercorrelation and (b) the effect size (for power) or the magnitude of the predictor-criterion correlations (for Type I error rate). When the authors considered Type I error rate and power simultaneously, the findings suggested that O. J. Dunn and V. A. Clark's (1969) z and E. J. Williams's (1959) t have the best overall statistical properties. The findings extend and refine previous simulation research and as such, should have greater utility for applied researchers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.