Abstract

PET preclinical studies require high spatial resolution due to the limited size of the animal under investigation. To achieve this target, iterative image reconstruction algorithms are commonly preferred over the analytical methods because they offer the possibility of accurately modeling the whole imaging process. In this work, we propose an accurate factorized system matrix for the INVISCAN IRIS preclinical PET scanner to be used with an iterative algorithm. The model includes two components: the geometric component and the detector response of the system. The main innovative aspect of the work is the creation of the detector matrix using a Monte Carlo simulation, with a particular focus on the optimization of the simulation process to reduce the calculation time. The new system model is compared with the current IRIS model to evaluate the image quality, following the NEMA Standards NU 4-2008. The comparison showed an enhancement of the image quality, in terms of uniformity and recovery coefficients. This work confirms that the inclusion of the detector response into the system model leads to improved reconstruction results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.