Abstract

Incomplete growth curve data often result from missing or mistimed observations in a repeated measures design. Virtually all methods of analysis rely on the dispersion matrix estimates. A Monte Carlo simulation was used to compare three methods of estimation of dispersion matrices for incomplete growth curve data. The three methods were: 1) maximum likelihood estimation with a smoothing algorithm, which finds the closest positive semidefinite estimate of the pairwise estimated dispersion matrix; 2) a mixed effects model using the EM (estimation maximization) algorithm; and 3) a mixed effects model with the scoring algorithm. The simulation included 5 dispersion structures, 20 or 40 subjects with 4 or 8 observations per subject and 10 or 30% missing data. In all the simulations, the smoothing algorithm was the poorest estimator of the dispersion matrix. In most cases, there were no significant differences between the scoring and EM algorithms. The EM algorithm tended to be better than the scoring algorithm...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call