Abstract

Abstract A solution to multivariate state-space modeling, forecasting, and smoothing is discussed. We allow for the possibilities of nonnormal errors and nonlinear functionals in the state equation, the observational equation, or both. An adaptive Monte Carlo integration technique known as the Gibbs sampler is proposed as a mechanism for implementing a conceptually and computationally simple solution in such a framework. The methodology is a general strategy for obtaining marginal posterior densities of coefficients in the model or of any of the unknown elements of the state space. Missing data problems (including the k-step ahead prediction problem) also are easily incorporated into this framework. We illustrate the broad applicability of our approach with two examples: a problem involving nonnormal error distributions in a linear model setting and a one-step ahead prediction problem in a situation where both the state and observational equations are nonlinear and involve unknown parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.