Abstract

AbstractA \(\fancyscript{C}^1\)-continuous rational cubic fractal interpolation function was introduced and its monotonicity aspect was investigated in [Adv. Difference Eq. (30) 2014]. Using this univariate interpolant and a blending technique, in this article, we develop a monotonic rational fractal interpolation surface (FIS) for given monotonic surface data arranged on the rectangular grid. The analytical properties like convergence and stability of the rational cubic FIS are studied. Under some suitable hypotheses on the original function, the convergence of the rational cubic FIS is studied by calculating an upper bound for the uniform error of the surface interpolation. The stability results are studied when there is a small perturbation in the corresponding scaling factors. We also provide numerical examples to corroborate our theoretical results.KeywordsFractalsFractal interpolation functionsFractal interpolation surfacesMonotonicityBlending functions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.