Abstract
We present a monotonic convolution for planar regions A and B bounded by line and circular arc segments. The Minkowski sum equals the union of the cells with positive crossing numbers in the arrangement of the convolution, as is the case for the kinetic convolution. The monotonic crossing number is bounded by the kinetic crossing number, and also by the maximum number of intersecting pairs of monotone boundary chains, which is typically much smaller. We give a Minkowski sum algorithm based on the monotonic convolution. The running time is O (s + nα(n) log (n) + m2), versus O (s + n2) for the kinetic algorithm, with s the input size and with n and m the number of segments in the kinetic and monotonic convolutions. For inputs with a bounded number of turning points and inflection points, the running time is O (sα(s) log s), versus Ω(s2) for the kinetic algorithm. The monotonic convolution is 37% smaller than the kinetic convolution and its arrangement is 62% smaller based on 21 test pairs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Geometry & Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.