Abstract

A stable finite-difference scheme is constructed on a minimum stencil of a uniform mesh for a two-dimensional steady-state convection – diffusion equation of a general form; the scheme is theoretically studied and tested. It satisfies the maximum principle and has the fourth order of approximation. The scheme monotonicity is controlled by two regularization parameters introduced into the difference operator. The scheme is focused on solving applied convection – diffusion problems with a developed boundary layer, including gravitational convection, thermomagnetic convection, and diffusion of particles in a magnetic fluid. The scheme is tested on the well-known problem of a high-intensive gravitational convection in a horizontal channel of a square cross-section with a uniform heating from the side. A detailed comparison is performed with the monotone Samarskii scheme of the second order approximation on the sequences of square meshes with the number of partitions from 10 to 1000 on each side of the square domain and over the entire range of the Rayleigh numbers, corresponding to the laminar convection mode. A significant advantage of the fourth order scheme in the convergence rate is shown for the decreasing mesh step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.