Abstract

In principle, the end-fire directivity of a linear periodic array of N isotropic radiators can approach N/sup 2/ as the spacing between elements decreases, provided the magnitude and phase of the input excitations are properly chosen. Thus, the directivity of a two-element array of isotropic radiators would approach a value of four, that is, 6 dB higher than that of a single isotropic radiator. We have conducted a theoretical, computational, and experimental study for a two-element superdirective array of resonant monopoles. In agreement with the theoretical and computational curves, the measured gain of the monopole array does indeed continually increase with decreasing spacing of the monopoles, provided the relative magnitudes and phases are maintained. However, for very small separation, maximum achievable gain is not reached due to the presence of ohmic loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.