Abstract
AbstractPreparing efficient and robust water oxidation catalyst (WOC) with inexpensive materials remains a crucial challenge in artificial photosynthesis and for renewable energy. Existing heterogeneous WOCs are mostly metal oxides/hydroxides immobilized on solid supports. Herein we report a newly synthesized and structurally characterized metal–organic hybrid compound [{Co3(μ3‐OH)(BTB)2(dpe)2} {Co(H2O)4(DMF)2}0.5]n⋅n H2O (Co‐WOC‐1) as an effective and stable water‐oxidation electrocatalyst in an alkaline medium. In the crystal structure of Co‐WOC‐1, a mononuclear CoII complex {Co(H2O)4(DMF)2}2+ is encapsulated in the void space of a 3D framework structure and this translationally rigid complex cation is responsible for a remarkable electrocatalytic WO activity, with a catalytic turnover frequency (TOF) of 0.05 s−1 at an overpotential of 390 mV (vs. NHE) in 0.1 m KOH along with prolonged stability. This host–guest system can be described as a “ship‐in‐a‐bottle”, and is a new class of heterogeneous WOC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.